Auxin controls Arabidopsis adventitious root initiation by regulating jasmonic acid homeostasis.

نویسندگان

  • Laurent Gutierrez
  • Gaëlle Mongelard
  • Kristyna Floková
  • Daniel I Pacurar
  • Ondrej Novák
  • Paul Staswick
  • Mariusz Kowalczyk
  • Monica Pacurar
  • Hervé Demailly
  • Gaia Geiss
  • Catherine Bellini
چکیده

Vegetative shoot-based propagation of plants, including mass propagation of elite genotypes, is dependent on the development of shoot-borne roots, which are also called adventitious roots. Multiple endogenous and environmental factors control the complex process of adventitious rooting. In the past few years, we have shown that the auxin response factors ARF6 and ARF8, targets of the microRNA miR167, are positive regulators of adventitious rooting, whereas ARF17, a target of miR160, is a negative regulator. We showed that these genes have overlapping expression profiles during adventitious rooting and that they regulate each other's expression at the transcriptional and posttranscriptional levels by modulating the homeostasis of miR160 and miR167. We demonstrate here that this complex network of transcription factors regulates the expression of three auxin-inducible Gretchen Hagen3 (GH3) genes, GH3.3, GH3.5, and GH3.6, encoding acyl-acid-amido synthetases. We show that these three GH3 genes are required for fine-tuning adventitious root initiation in the Arabidopsis thaliana hypocotyl, and we demonstrate that they act by modulating jasmonic acid homeostasis. We propose a model in which adventitious rooting is an adaptive developmental response involving crosstalk between the auxin and jasmonate regulatory pathways.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Adventitious rooting declines with the vegetative to reproductive switch and involves a changed auxin homeostasis

Adventitious rooting, whereby roots form from non-root tissues, is critical to the forestry and horticultural industries that depend on propagating plants from cuttings. A major problem is that age of the tissue affects the ability of the cutting to form adventitious roots. Here, a model system has been developed using Pisum sativum to differentiate between different interpretations of ageing. ...

متن کامل

Auxin and light control of adventitious rooting in Arabidopsis require ARGONAUTE1.

Adventitious rooting is a quantitative genetic trait regulated by both environmental and endogenous factors. To better understand the physiological and molecular basis of adventitious rooting, we took advantage of two classes of Arabidopsis thaliana mutants altered in adventitious root formation: the superroot mutants, which spontaneously make adventitious roots, and the argonaute1 (ago1) mutan...

متن کامل

Localized induction of the ATP-binding cassette B19 auxin transporter enhances adventitious root formation in Arabidopsis.

Adventitious roots emerge from aerial plant tissues, and the induction of these roots is essential for clonal propagation of agriculturally important plant species. This process has received extensive study in horticultural species but much less focus in genetically tractable model species. We have explored the role of auxin transport in this process in Arabidopsis (Arabidopsis thaliana) seedli...

متن کامل

Phenotypic plasticity of adventitious rooting in Arabidopsis is controlled by complex regulation of AUXIN RESPONSE FACTOR transcripts and microRNA abundance.

The development of shoot-borne roots, or adventitious roots, is indispensable for mass propagation of elite genotypes. It is a complex genetic trait with a high phenotypic plasticity due to multiple endogenous and environmental regulatory factors. We demonstrate here that a subtle balance of activator and repressor AUXIN RESPONSE FACTOR (ARF) transcripts controls adventitious root initiation. M...

متن کامل

Arabidopsis IAR4 modulates auxin response by regulating auxin homeostasis.

In a screen for enhancers of tir1-1 auxin resistance, we identified two novel alleles of the putative mitochondrial pyruvate dehydrogenase E1alpha-subunit, IAA-Alanine Resistant4 (IAR4). In addition to enhancing the auxin response defects of tir1-1, iar4 single mutants exhibit numerous auxin-related phenotypes including auxin-resistant root growth and reduced lateral root development, as well a...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • The Plant cell

دوره 24 6  شماره 

صفحات  -

تاریخ انتشار 2012